Non-Convex Feasibility Robust Optimization Via Scenario Generation and Local Refinement

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Optimization For Non-Convex Problems via Column Generation

We apply column generation to approximating complex structured objects via a set of primitive structured objects under either the cross entropy or L2 loss. We use L1 regularization to encourage the use of few structured primitive objects. We attack approximation using convex optimization over an infinite number of variables each corresponding to a primitive structured object that are generated ...

متن کامل

Robust Orbit Determination via Convex Optimization

Given the initial position and velocity of an object, such as a satellite in orbit around the Earth, it is possible to determine its position and velocity at any other time by integrating the equations of motion. This prediction method is called propagating. Specifying the position and velocity of the satellite at a specific time, called the epoch, is a common way of representing an orbit. In t...

متن کامل

Robust quantum error correction via convex optimization.

We present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity. We illustrate our theory num...

متن کامل

Networked Parallel Algorithms for Robust Convex Optimization via the Scenario Approach

This paper proposes a parallel computing framework to distributedly solve robust convex optimization (RCO) when the constraints are affected by nonlinear uncertainty. To this end, we adopt a scenario approach by randomly sampling the uncertainty set. To facilitate the computational task, instead of using a single centralized processor to obtain a “global solution” of the scenario problem (SP), ...

متن کامل

Robust Optimization for Non-Convex Objectives

We consider robust optimization problems, where the goal is to optimize in the worst case over a class of objective functions. We develop a reduction from robust improper optimization to Bayesian optimization: given an oracle that returns αapproximate solutions for distributions over objectives, we compute a distribution over solutions that is α-approximate in the worst case. We show that deran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mechanical Design

سال: 2019

ISSN: 1050-0472,1528-9001

DOI: 10.1115/1.4044918